Novel Electronic States in Graphene Ribbons -Competing Spin and Charge Orders-
نویسندگان
چکیده
In a nanographene ring with zigzag edges, the spin-polarized state and the charge-polarized state are stabilized by the on-site and the nearest neighbor Coulomb repulsions, U and V , respectively, within the extended Hubbard model under the mean field approximation. In a Möbius strip of the nanographene with a zigzag edge, U stabilizes two magnetic states, the domain wall state and the helical state. Both states have ferrimagnetic spins localized along the zigzag edge while the former connects the opposite ferrimagnetic orders resulting in a magnetic frustration forced by the topology and the latter rotates the ferrimagnetic spins uniformly to circumvent the frustration. The helical state is lower in energy than the domain wall state. On the other hand, V stabilizes another domain wall state connecting the opposite charge orders.
منابع مشابه
Electron-electron and spin-orbit interactions in armchair graphene ribbons.
The effects of intrinsic spin-orbit and Coulomb interactions on low-energy properties of finite width graphene armchair ribbons are studied by means of a Dirac Hamiltonian. It is shown that metallic states subsist in the presence of intrinsic spin-orbit interactions as spin-filtered edge states, in contrast with the insulating behavior predicted for graphene planes. A charge-gap opens due to Co...
متن کاملInterplay between symmetry and spin-orbit coupling on graphene nanoribbons
We study the electronic structure of chiral and achiral graphene nanoribbons with symmetric edges, including curvature and spin-orbit effects. Curved ribbons show spin-split bands, whereas flat ribbons present spin-degenerate bands. We show that this effect is due to the breaking of spatial inversion symmetry in curved graphene nanoribbons, while flat ribbons with symmetric edges possess an inv...
متن کاملOptical and electronic properties of graphene nanoribbons upon adsorption of ligand-protected aluminum clusters.
We have carried out first-principles calculations to investigate how the electronic and optical features of graphene nanoribbons are affected by the presence of atomic clusters. Aluminum clusters of different sizes and stabilized by organic ligands were deposited on graphene nanoribbons from which the energetic features of the adsorption plus electronic structure were treated within density-fun...
متن کاملEdge-functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties
Graphene nanoribbons are the counterpart of carbon nanotubes in graphene-based nanoelectronics. We investigate the electronic properties of chemically modified ribbons by means of density functional theory. We observe that chemical modifications of zigzag ribbons can break the spin degeneracy. This promotes the onset of a semiconducting-metal transition, or of a half-semiconducting state, with ...
متن کاملQuantum spin Hall effect in graphene.
We study the effects of spin orbit interactions on the low energy electronic structure of a single plane of graphene. We find that in an experimentally accessible low temperature regime the symmetry allowed spin orbit potential converts graphene from an ideal two-dimensional semimetallic state to a quantum spin Hall insulator. This novel electronic state of matter is gapped in the bulk and supp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003